資安軟體-值得您信賴的資安專家,擁有多年資安服務。

HB-Reg 貝斯階層回歸軟體

HB-Reg 貝斯階層回歸軟體

  • HB-Reg 貝斯階層回歸軟體
  • 編號
  • 類別
    研究分析軟體
  • 介紹
    什麼是分層貝斯階層回歸(HB-Reg)?在市場研究數據的分析中,有很多時候研究人員有受訪者,商店或其他實驗單位的樣本,並希望估計每個單位的單獨回歸係數。在過去幾年中,分層貝葉斯(HB)估計在市場營銷研究中發揮著越來越重要的作用。它可以在精度和有效性方面改進參數估計(例如β權重和效用)。我們的HB-Reg軟件用於基於回歸的問題,其中受訪者提供包含連續因變量的多個觀察(病例)。
  • 價格

About HB-Reg

In the analysis of marketing research data, there are many occasions when the researcher has a sample of respondents, stores, or other experimental units, and wishes to estimate separate regression coefficients for each unit.
Consider three examples,
  • In full-profile conjoint analysis, respondents give preference ratings for hypothetical product concepts. Regression analysis is often used, where the independent variables are columns of a "design matrix" describing the concepts, and the dependent variable consists of preference ratings.
  • Respondents in a customer satisfaction study provide ratings of several companies. Some ratings are on "explanatory" variables, such as customer service, product durability, convenience of use, etc. Other ratings are more general, such as overall satisfaction with the companies' products. One goal of the study is to infer the relative importance of each explanatory factor in determining overall satisfaction.
  • During a pricing experiment in grocery stores, the prices of several products are varied systematically in different time periods, and sales of each product are measured with scanner data. The independent variables are product prices and other factors such as the presence of displays, coupons, and newspaper features. The dependent variables are product sales.
In each situation, respondents or stores may have different regression functions. In the past, researchers have often tried to handle this problem by ignoring heterogeneity among individuals, pooling all the data, and estimating a single set of regression coefficients that describe the "average" individual. However, an alternative solution has recently become available to marketing researchers with the introduction of "hierarchical Bayes" (HB) methods.
Aggregate regression confounds heterogeneity (true differences between respondents/stores) with noise. Because HB-Reg can distinguish heterogeneity from noise, it results in more stable individual- AND aggregate-level estimates of betas. HB-Reg also is more robust in the case of multicolinearity among the independent variables than aggregate regression.
Several recent articles have shown that hierarchical Bayes estimation can do a creditable job of estimating individual parameters even when there are more parameters than observations per individual. This is done by considering each individual to be a sample from a population of similar individuals, and "borrowing" information from other individuals in the estimation for each one.
HB-Reg is a generalized analytical tool. The user provides the data as a matrix of independent variables and a dependent variable column in a text-only file. HB-Reg offers parameter constraints, meaning the ability to constrain certain parameters to be larger (smaller) than others, or to be greater than or less than zero. Advanced users can also control the prior variance and covariances, and degrees of freedom for the prior covariance matrix. These features will permit more reasonable estimation of parameters, even when relatively sparse information is available within the unit of analysis.
When using the full-size system, up to 1000 parameters per individual can be estimated. HB-Reg requires the Microsoft .NET framework.

分層貝斯階層回歸?

在市場研究數據的分析中,有很多時候研究人員有受訪者,商店或其他實驗單位的樣本,並希望估計每個單位的單獨回歸係數。

概觀
在過去幾年中,分層貝葉斯(HB)估計在市場營銷研究中發揮著越來越重要的作用。它可以在精度和有效性方面改進參數估計(例如β權重和效用)。我們的HB-Reg軟件用於基於回歸的問題,其中受訪者提供包含連續因變量的多個觀察(病例)。

特徵
•每位受訪者最多可獲得1000個參數,適用於無限受訪者。
•使用純文本,空格分隔的輸入文件

系統要求
HB-Reg旨在在Microsoft Windows 2000或更高版本上運行。

SuperMix 混合效應建模分析軟體

SuperMix是由DonaldHedeker教授和RobertGibbons教授以及SSI共同開發的處理混合模型又稱階層模型的軟體。 該軟體可以對二層和三層數據進行線性處理。 SuperMix適用於對連續(continuous)因變量、二元(binary)因變量、計數(count)因變量、順序(ordinary)因變量和名義因變量進行模型分析。 

特價0

SuperMix 混合效應建模分析軟體
SuperMix 混合效應建模分析軟體

Design-Expert 11 實驗設計軟體

Design Expert11是一款功能強大的實驗設計專家,它是目前使用最為廣泛的設計軟件之一,使用可對篩選關鍵因素,還可以找到頂級性能的理想工藝設置,並發現最佳產品配方。輕鬆查看可旋轉3D圖的所有角度的響應面。設置標誌和探索交互式2D圖形上的輪廓,並使用數值優化功能找到最大可取幾十個反應同時進行!

特價0

Design-Expert 11 實驗設計軟體
Design-Expert 11 實驗設計軟體

CART 6.0 ProEX 資料挖掘分析軟體

CART是Salford Systems的旗艦數據挖掘軟件,該軟件是一款功能強大、易操作的決策樹,能自動篩選複雜的數據。從技術上講,CART建模引擎基於1984年由斯坦福大學和加州大學伯克利分校的四位世界知名統計學家引入的具有里程碑意義的數學理論。CART建模引擎是SPM的分類和回歸樹實現,是​​唯一體現原始專有代碼的決策樹軟件。

特價0

CART 6.0 ProEX 資料挖掘分析軟體
CART 6.0 ProEX 資料挖掘分析軟體