HB-Reg 貝斯階層回歸軟體-資安軟體/研究分析軟體/心理學軟體/新永資訊有限公司

HB-Reg 貝斯階層回歸軟體

HB-Reg 貝斯階層回歸軟體

  • HB-Reg 貝斯階層回歸軟體
  • 編號
  • 類別
    研究分析軟體
  • 介紹
    什麼是分層貝斯階層回歸(HB-Reg)?在市場研究數據的分析中,有很多時候研究人員有受訪者,商店或其他實驗單位的樣本,並希望估計每個單位的單獨回歸係數。在過去幾年中,分層貝葉斯(HB)估計在市場營銷研究中發揮著越來越重要的作用。它可以在精度和有效性方面改進參數估計(例如β權重和效用)。我們的HB-Reg軟件用於基於回歸的問題,其中受訪者提供包含連續因變量的多個觀察(病例)。
  • 價格

About HB-Reg

In the analysis of marketing research data, there are many occasions when the researcher has a sample of respondents, stores, or other experimental units, and wishes to estimate separate regression coefficients for each unit.
Consider three examples,
  • In full-profile conjoint analysis, respondents give preference ratings for hypothetical product concepts. Regression analysis is often used, where the independent variables are columns of a "design matrix" describing the concepts, and the dependent variable consists of preference ratings.
  • Respondents in a customer satisfaction study provide ratings of several companies. Some ratings are on "explanatory" variables, such as customer service, product durability, convenience of use, etc. Other ratings are more general, such as overall satisfaction with the companies' products. One goal of the study is to infer the relative importance of each explanatory factor in determining overall satisfaction.
  • During a pricing experiment in grocery stores, the prices of several products are varied systematically in different time periods, and sales of each product are measured with scanner data. The independent variables are product prices and other factors such as the presence of displays, coupons, and newspaper features. The dependent variables are product sales.
In each situation, respondents or stores may have different regression functions. In the past, researchers have often tried to handle this problem by ignoring heterogeneity among individuals, pooling all the data, and estimating a single set of regression coefficients that describe the "average" individual. However, an alternative solution has recently become available to marketing researchers with the introduction of "hierarchical Bayes" (HB) methods.
Aggregate regression confounds heterogeneity (true differences between respondents/stores) with noise. Because HB-Reg can distinguish heterogeneity from noise, it results in more stable individual- AND aggregate-level estimates of betas. HB-Reg also is more robust in the case of multicolinearity among the independent variables than aggregate regression.
Several recent articles have shown that hierarchical Bayes estimation can do a creditable job of estimating individual parameters even when there are more parameters than observations per individual. This is done by considering each individual to be a sample from a population of similar individuals, and "borrowing" information from other individuals in the estimation for each one.
HB-Reg is a generalized analytical tool. The user provides the data as a matrix of independent variables and a dependent variable column in a text-only file. HB-Reg offers parameter constraints, meaning the ability to constrain certain parameters to be larger (smaller) than others, or to be greater than or less than zero. Advanced users can also control the prior variance and covariances, and degrees of freedom for the prior covariance matrix. These features will permit more reasonable estimation of parameters, even when relatively sparse information is available within the unit of analysis.
When using the full-size system, up to 1000 parameters per individual can be estimated. HB-Reg requires the Microsoft .NET framework.

HB-Reg 貝斯階層回歸軟體

什麼是分層貝斯階層回歸(HB-Reg)?
在市場研究數據的分析中,有很多時候研究人員有受訪者,商店或其他實驗單位的樣本,並希望估計每個單位的單獨回歸係數。

概觀
在過去幾年中,分層貝葉斯(HB)估計在市場營銷研究中發揮著越來越重要的作用。它可以在精度和有效性方面改進參數估計(例如β權重和效用)。我們的HB-Reg軟件用於基於回歸的問題,其中受訪者提供包含連續因變量的多個觀察(病例)。

特徵
•每位受訪者最多可獲得1000個參數,適用於無限受訪者。
•使用純文本,空格分隔的輸入文件

系統要求
HB-Reg旨在在Microsoft Windows 2000或更高版本上運行。

Overview
Hierarchical Bayesian (HB) estimation has taken on an increasingly important role in marketing research over the last few years. It can improve estimates of parameters (such as beta weights and utilities) both in terms of precision and validity. Our HB-Reg software is for regression-based problems where respondents provide multiple observations (cases) which include a continuous dependent variable.

Features
  •  Up to 1000 parameters per respondent, for unlimited respondents.
  •  Uses text-only, space-delimited input files

System Requirements
HB-Reg is designed to run on Microsoft Windows 2000 or later.

Frontier analyst 資料包絡分析軟體

在您的組織提高您的效率並且重新解釋性能測量以Frontier Analyst®。 使用技術以資料包絡分析(DEA)著名,執行宗旨,採取您在純粹表現之外財政措施的比較效率分析研究。 理想用於零售,加盟,金融業務,醫療保健,公共業務和許多其他事務單位根據企業。Frontier Analyst®易於使用、結合強大功能並幫助您達到您的目標。

特價0

Frontier analyst 資料包絡分析軟體
Frontier analyst 資料包絡分析軟體

SimaPro 生命週期評估軟體

生命週期評估(Life Cycle Assessment, LCA) 是現今產品發展與設計所需參考的一項重要指標方針,美國環境毒物及化學協會將其定義為一個衡量產品生產或人類活動所伴隨之環境負荷的工具。

特價0

SimaPro 生命週期評估軟體
SimaPro 生命週期評估軟體

Winsteps 項目分析理論軟體

Winsteps是一個項目反應理論軟體。項目反應理論(Item Response Theory, IRT)是屬於現代測驗理論,因為古典測驗理論有一些難以克服的缺點,如用不同項目的測驗結果無法比較,數據沒有等距性,測量結果容易受到樣本的影響,以及多變量處理不易,而現代IRT理論,可以有效克服以上的缺點,所以IRT廣泛的應用於教育測驗領域,如GRE,TOEFL等測驗,近年來也擴展應用到各科學領域的測驗評估。

特價0

Winsteps 項目分析理論軟體
Winsteps 項目分析理論軟體

公司資訊

立即聯繫

透過以下方式迅速的聯絡我們

2018© Copyright All Rights Reserved

蘋果網頁設計
資安軟體量身規劃資訊安全零死角,提供有效方案,以期協助企業運用新科技改善及提升其商業服務及價值,資安軟體達到運用新科技最佳化商業營運及價值的目標。秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路。資安軟體秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路