HB-Reg 貝斯階層回歸軟體-資安軟體/研究分析軟體/心理學軟體/新永資訊有限公司

HB-Reg 貝斯階層回歸軟體

HB-Reg 貝斯階層回歸軟體

  • HB-Reg 貝斯階層回歸軟體
  • 編號
  • 類別
    研究分析軟體
  • 介紹
    什麼是分層貝斯階層回歸(HB-Reg)?在市場研究數據的分析中,有很多時候研究人員有受訪者,商店或其他實驗單位的樣本,並希望估計每個單位的單獨回歸係數。在過去幾年中,分層貝葉斯(HB)估計在市場營銷研究中發揮著越來越重要的作用。它可以在精度和有效性方面改進參數估計(例如β權重和效用)。我們的HB-Reg軟件用於基於回歸的問題,其中受訪者提供包含連續因變量的多個觀察(病例)。
  • 價格

About HB-Reg

In the analysis of marketing research data, there are many occasions when the researcher has a sample of respondents, stores, or other experimental units, and wishes to estimate separate regression coefficients for each unit.
Consider three examples,
  • In full-profile conjoint analysis, respondents give preference ratings for hypothetical product concepts. Regression analysis is often used, where the independent variables are columns of a "design matrix" describing the concepts, and the dependent variable consists of preference ratings.
  • Respondents in a customer satisfaction study provide ratings of several companies. Some ratings are on "explanatory" variables, such as customer service, product durability, convenience of use, etc. Other ratings are more general, such as overall satisfaction with the companies' products. One goal of the study is to infer the relative importance of each explanatory factor in determining overall satisfaction.
  • During a pricing experiment in grocery stores, the prices of several products are varied systematically in different time periods, and sales of each product are measured with scanner data. The independent variables are product prices and other factors such as the presence of displays, coupons, and newspaper features. The dependent variables are product sales.
In each situation, respondents or stores may have different regression functions. In the past, researchers have often tried to handle this problem by ignoring heterogeneity among individuals, pooling all the data, and estimating a single set of regression coefficients that describe the "average" individual. However, an alternative solution has recently become available to marketing researchers with the introduction of "hierarchical Bayes" (HB) methods.
Aggregate regression confounds heterogeneity (true differences between respondents/stores) with noise. Because HB-Reg can distinguish heterogeneity from noise, it results in more stable individual- AND aggregate-level estimates of betas. HB-Reg also is more robust in the case of multicolinearity among the independent variables than aggregate regression.
Several recent articles have shown that hierarchical Bayes estimation can do a creditable job of estimating individual parameters even when there are more parameters than observations per individual. This is done by considering each individual to be a sample from a population of similar individuals, and "borrowing" information from other individuals in the estimation for each one.
HB-Reg is a generalized analytical tool. The user provides the data as a matrix of independent variables and a dependent variable column in a text-only file. HB-Reg offers parameter constraints, meaning the ability to constrain certain parameters to be larger (smaller) than others, or to be greater than or less than zero. Advanced users can also control the prior variance and covariances, and degrees of freedom for the prior covariance matrix. These features will permit more reasonable estimation of parameters, even when relatively sparse information is available within the unit of analysis.
When using the full-size system, up to 1000 parameters per individual can be estimated. HB-Reg requires the Microsoft .NET framework.

HB-Reg 貝斯階層回歸軟體

什麼是分層貝斯階層回歸(HB-Reg)?
在市場研究數據的分析中,有很多時候研究人員有受訪者,商店或其他實驗單位的樣本,並希望估計每個單位的單獨回歸係數。

概觀
在過去幾年中,分層貝葉斯(HB)估計在市場營銷研究中發揮著越來越重要的作用。它可以在精度和有效性方面改進參數估計(例如β權重和效用)。我們的HB-Reg軟件用於基於回歸的問題,其中受訪者提供包含連續因變量的多個觀察(病例)。

特徵
•每位受訪者最多可獲得1000個參數,適用於無限受訪者。
•使用純文本,空格分隔的輸入文件

系統要求
HB-Reg旨在在Microsoft Windows 2000或更高版本上運行。

Overview
Hierarchical Bayesian (HB) estimation has taken on an increasingly important role in marketing research over the last few years. It can improve estimates of parameters (such as beta weights and utilities) both in terms of precision and validity. Our HB-Reg software is for regression-based problems where respondents provide multiple observations (cases) which include a continuous dependent variable.

Features
  •  Up to 1000 parameters per respondent, for unlimited respondents.
  •  Uses text-only, space-delimited input files

System Requirements
HB-Reg is designed to run on Microsoft Windows 2000 or later.

CATPAC 文本分析軟體

CATPAC 是一個智能程序,可以閱讀任何文本並總結其主要想法。它不需要預編碼,也不需要語言假設。它在世界上許多世界上最重要的期刊上都有出色的研究記錄。到目前為止,這個世界上最大的數據是文本。與數字或分類尺度不同,文本允許人們以他們希望的任何方式表達自己。但是對文本的分析特別耗時並且受到讀者偏見的影響。Catpac克服了這兩個問題。

特價0

CATPAC 文本分析軟體
CATPAC 文本分析軟體

Tradecision 交易情報軟體

Tradecision是一個專業級的交易軟件應用程序,用於圖表,技術分析和建立交易系統。除了採用最好的常用技術外,Tradecision還使用神經網絡和遺傳算法,提供多種獨有的技術分析功能。使用經過驗證的技術和Alyuda專有的內置算法,Tradecision用戶可以分析市場,測試他們的想法並最大化利潤,同時保持低風險和高回報。

特價0

Tradecision 交易情報軟體
Tradecision 交易情報軟體

Qualitek-4

Qualitek-4軟體輔助避免掉複雜的實驗設計過程,快速的幫助您尋找出最佳實驗條件組合與分析,並可比較改善前後的差異性,提供使用者實質預測數據作為決策的依據。

特價0

Qualitek-4
Qualitek-4

公司資訊

立即聯繫

透過以下方式迅速的聯絡我們

2018© Copyright All Rights Reserved

蘋果網頁設計
資安軟體量身規劃資訊安全零死角,提供有效方案,以期協助企業運用新科技改善及提升其商業服務及價值,資安軟體達到運用新科技最佳化商業營運及價值的目標。秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路。資安軟體秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路