GeneHunter 遺傳演算分析軟體-研究分析軟體 | 新永資訊有限公司

GeneHunter 遺傳演算分析軟體

GeneHunter 遺傳演算分析軟體

  • GeneHunter 遺傳演算分析軟體
  • 編號
  • 類別
    研究分析軟體
  • 介紹
    由WardSystems Group, Inc.開發,用於類神經網路與遺傳基因演算的軟體。GeneHunter是利用最新型的遺傳算法, 來優化問題的一個強而有力的軟體解決方案。GeneHunter 加入一項於Microsoft Excel 的優化程式,能將使用者來自Microsoft Excel所產生的問題最佳化, 另外也可從Microsoft Visual Basic或是VisualC 的連結程式庫做演算。
  • 價格

GeneHunter 遺傳演算分析軟體


What Are Genetic Algorithms?
Genetic algorithms (GAs) seek to solve optimization problems using the methods of evolution, specifically survival of the fittest. In a typical optimization problem, there are a number of variables which control the process, and a formula or algorithm which combines the variables to fully model the process. The problem is then to find the values of the variables which optimize the model in some way. If the model is a formula, then we will usually be seeking the maximum or minimum value of the formula. There are many mathematical methods which can optimize problems of this nature (and very quickly) for fairly "well-behaved" problems. These traditional methods tend to break down when the problem is not so "well-behaved."
Evolution and Genetic Algorithms
Before describing how a genetic algorithm can be applied to an optimization problem, let us draw the evolutionary parallel. The theory is that a population of a certain species will, after many generations, adapt to live better in its environment.
For example, if the species is an animal that lives mainly in a swampy area, it may eventually evolve with webbed feet. The reason is that the members of this population, which we call individuals, will tend to die if they are poor swimmers which cannot easily get food, and live to reproduce if they are good swimmers. The offspring of two good swimmers will probably be good swimmers because they will usually carry genetic traits of their parents, such as slight webbing between their toes. These genetic traits are carried in the chromosomes of the individuals.


How Does GeneHunter Work?
GeneHunter solves optimization problems in the same way. It will create a population of possible solutions to the problem. The individuals in this population will carry chromosomes which are the values of variables of the problem.
GeneHunter actually solves your problem by allowing the less fit individuals in the population to die, and selectively breeding the most fit individuals. The process is called selection, as in selection of the fittest. GeneHunter takes two individuals and mates them (crossover), the offspring of the mated pair will receive some of the characteristics of the mother and some of the father.


In nature, offspring often have some slight abnormalities, called mutations. Usually, these mutations are disabling and inhibit the ability of the offspring to survive, but once in a while, they improve the fitness of the individual. GeneHunter occasionally causes mutations to occur.

As GeneHunter mates fit individuals and mutates some, the population undergoes a generation change. The population will then consist of offspring plus a few of the older individuals which GeneHunter allows to survive to the next generation. These are the most fit in the population, and we will want to keep them breeding. These most fit individuals are called elite individuals. After dozens or even hundreds of "generations," a population eventually emerges wherein the individuals will solve the problem very well. In fact, the most fit (elite) individual will be an optimum or close to optimum solution.

 
 

支持的操作系統

Windows 10,Windows 8.1,Windows 8,Windows 7,Windows Vista,Windows XP和Windows 2000 SP4是唯一受支持的操作系統。該軟件可能仍可以在較舊的Windows 95/98 / Me / NT上運行,但不能保證在那些較舊的系統上的性能。
如果您在MAC(例如,在Parallels下)或Linux的虛擬窗口中運行上述操作系統,我們的程序應該可以運行,但是我們的技術支持部門無法為您提供幫助,但Windows 10,Windows 8,Windows 7,Vista,XP除外,以及帶有SP4的2000。您必須使用具有至少256MB RAM的Intel兼容處理器(例如AMD)的PC。
GeneHunter和NeuroShell Run-Time Server可以在所有最新版本的Excel(2010、2013、2016等)中以64位或32位應用程序運行,但只能在Excel 2003和Excel 2007中以32位運行。
NeuroShell 2可以從Microsoft Excel電子表格導入到2007年。內部文件可以由我們自己的數據網格程序查看,也可以由Excel版本直到2003年查看



 

GeneHunter 遺傳演算分析軟體

什麼是遺傳算法?
遺傳算法(GA)試圖用進化的方法,特別是適者生存的方法來解決優化問題。在一個典型的優化問題中,有許多控製過程的變量,以及一個公式或算法,它將變量結合起來,以完全模擬過程。那麼問題就是要找到變量的值,使模型在某種程度上得到優化。如果模型是一個公式,那麼我們通常會尋求公式的最大值或最小值。對於相當 "乖巧 "的問題,有許多數學方法可以優化這種性質的問題(而且速度非常快)。當問題不是那麼 "乖巧 "的時候,這些傳統的方法往往會崩潰。

進化和遺傳算法
在介紹如何將遺傳算法應用於優化問題之前,我們先把進化論平行起來。理論上,某個物種的種群在經過很多代之後,會適應環境,更好地生活在環境中。
例如,如果該物種是一種主要生活在沼澤地的動物,它最終可能會進化出有蹼的腳。因為這個種群中的成員,我們稱之為個體,如果是游泳能力差的,不容易獲得食物,就會傾向於死亡,如果是游泳能力強的,就會活下來繁殖。兩個善於游泳的人的後代很可能是善於游泳的人,因為他們通常會攜帶父母的遺傳特徵,比如腳趾間有輕微的蹼。這些遺傳特徵會在個體的染色體中進行。

GeneHunter是如何工作的?
GeneHunter以同樣的方式解決優化問題。它將創建一個可能解決該問題的群體。這個種群中的個體將攜帶染色體,這些染色體是問題的變量值。
GeneHunter實際上是通過讓種群中不太適合的個體死亡,並選擇性地培育最適合的個體來解決你的問題。這個過程叫做選擇,就像適者生存的選擇一樣。 GeneHunter將兩個個體進行交配(crossover),交配後的後代會得到母體的一些特徵和父體的一些特徵。

在自然界中,後代往往會有一些輕微的異常,稱為突變。通常,這些突變是致殘的,會抑制後代的生存能力,但偶爾也會改善個體的體質。 GeneHunter偶爾會導致突變發生。
當GeneHunter與適合的個體交配,並使一些個體發生突變時,種群就會發生換代。然後,種群將由後代加上一些GeneHunter允許生存到下一代的老個體組成。這些是種群中最適合的個體,我們要讓他們繼續繁衍下去。這些最適合的個體被稱為精英個體。經過幾十甚至上百個 "世代",最終會出現一個種群,其中的個體會很好地解決這個問題。事實上,最適合的(精英)個體將是一個最優或接近最優的解決方案。


 

SuperMix 3.0 混合效應建模分析軟體

SuperMix是由DonaldHedeker教授和RobertGibbons教授以及SSI共同開發的處理混合模型又稱階層模型的軟體。 該軟體可以對二層和三層數據進行線性處理。 SuperMix適用於對連續(continuous)因變量、二元(binary)因變量、計數(count)因變量、順序(ordinary)因變量和名義因變量進行模型分析。 

SuperMix 3.0 混合效應建模分析軟體

BILOG-MG4 項目反應測試軟體

使用這個Windows版本的BILOG-MG,舊版BILOG for Windows產品已經過時了。BILOG-MG-4具有BILOG的所有功能,加上差分項功能(DIF),項目參數漂移,等效和非等效組等同,垂直等同,兩階段測試,組均值估計,標準偏差和潛在分佈。

BILOG-MG4 項目反應測試軟體

Thermo-Calc 材料熱學性能模擬計算軟體

Thermo-Calc Software 專注於熱力學計算和擴散模擬領域,並努力為使用者提供專業的軟體、資料及服務。Thermo-Calc Software 是材料開發與研究領域中經驗豐富的電腦類比軟體提供者之一。

Thermo-Calc 材料熱學性能模擬計算軟體