CART® 資料挖掘分析軟體-資安軟體/研究分析軟體/心理學軟體/新永資訊有限公司

CART® 資料挖掘分析軟體

CART® 資料挖掘分析軟體

  • CART® 資料挖掘分析軟體
  • 編號
  • 類別
  • 介紹
    CART® 是Salford Systems的旗艦數據挖掘軟件,該軟件是一款功能強大、易操作的決策樹,能自動篩選複雜的數據。從技術上講,CART建模引擎基於1984年由斯坦福大學和加州大學伯克利分校的四位世界知名統計學家引入的具有里程碑意義的數學理論。CART建模引擎是SPM的分類和回歸樹實現,是​​唯一體現原始專有代碼的決策樹軟件。
  • 價格


Classification and Regression Trees
CART® software is the ultimate classification tree that has revolutionized the field of advanced analytics, and inaugurated the current era of data science. CART is one of the most important tools in modern data mining.
•  Linear Combination Splits
•  Optimal tree selection based on area under ROC curve
•  User defined splits for the root node and its children
•  Translating models into Topology
•  Edit and modify the CART trees via FORCE command structures
•  RATIO of the improvements of the primary splitter and the first competitor
•  Scoring of CV models as an Ensemble
•  Report impact of penalties in root node
•  New penalty against biased splits PENALTY BIAS (PENALTY / BIAS, CONTBIAS, CATBIAS)
•  Automation: Generate models with alternative handling of missing values (Automate MISSING_PENALTY)
•  Automation: Build a model using each splitting rule (six for classification, two for regression) (Automate RULES)
•  Automation: Build a series of models varying the depth of the tree (Automate DEPTH)
•  Automation: Build a series of models changing the minimum required size on parent nodes (Automate ATOM)
•  Automation: Build a series of models changing the minimum required size on child nodes (Automate MINCHILD)
•  Automation: Explore accuracy versus speed trade-off due to potential sampling of records at each node in a tree (Automate SUBSAMPLE)
•  Automation: Generates a series of N unsupervised-learning models (Automate UNSUPERVISED)
•  Automation: Varies the RIN (Regression In the Node) parameter through the series of values (Automate RIN)
•  Automation: Varying the number of "folds" used in cross-validation (Automate CVFOLDS)
•  Automation: Repeat cross-validation process many times to explore the variance of estimates (Automate CVREPEATED)
•  Automation: Build a series of models using a user-supplied list of binning variables for cross-validation (Automate CVBIN)
•  Automation: Check the validity of model performance using Monte Carlo shuffling of the target (Automate TARGETSHUFFLE)
•  Automation: Build two linked models, where the first one predicts the binary event while the second one predicts the amount (Automate RELATED). For example, predicting whether someone will buy and how much they will spend
•  Automation: Indicates whether a variable importance matrix report should be produced when possible (Automate VARIMP)
•  Automation: Saves the variable importance matrix to a comma-separated file (Automate VARIMPFILE)
•  Automation: Generate models with alternative handling of missing values (AUTOMATE MVI)
•  Hotspot detection for Automate UNSUPERVISED
•  Hotspot detection for Automate TARGET
•  Hotspot detection to identify the richest nodes across the multiple trees
•  Differential Lift Modeling (Netlift/Uplift)
•  Profile tab in CART Summary window
•  Multiple user defined lists for linear combinations
•  Constrained trees
•  Ability to create and save dummy variables for every node in the tree during scoring
•  Report basic stats on any variable of user choice at every node in the tree
•  Comparison of learn vs. test performance at every node of every tree in the sequence
•  Automation: Vary the priors for the specified class (Automate PRIORS)
•  Automation: Build a series of models by progressively removing misclassified records thus increasing the robustness of trees and posssibly reducing model complexity (Automate REFINE)
•  Automation: Bagging and ARCing using the legacy code (COMBINE)
•  Automation: Build a series of models limiting the number of nodes in a tree (Automate NODES)
•  Automation: Build a series of models trying each available predictor as the root node splitter (Automate ROOT)
•  Automation: Explore the impact of favoring equal sized child nodes by varying CART’s end cut parameter (Automate POWER)
•  Automation: Explore the impact of penalty on categorical predictors (Automate PENALTY=HLC)
•  Build a Random Forests model utlizing the CART engine to gain alternative handling of missing values via surrogate splits (Automate BOOTSTRAP RSPLIT)


最少40 MB
最少512 MB

CART® 資料挖掘分析軟體

CARTSalford Systems的旗艦數據挖掘軟件,該軟件是一款功能強大、易操作的決策樹,能自動篩選複雜的數據
Salford Predictive ModelerCART®建模引擎是最終的分類樹,它徹底改變了高級分析領域,並開創了當前數據科學的時代。CART是現代數據挖掘中最重要的工具之一。
CART建模引擎的專利擴展專門用於增強市場研究和網絡分析的結果。CART建模引擎支持高速部署,允許Salford Predictive Modeler的模型大規模實時預測和評分。多年來,CART建模引擎已成為分析師可用的最流行且易於使用的預測建模算法之一,它也被用作許多基於裝袋和增強的現代數據挖掘方法的基礎。

Vensim 8 系統思考分析軟體

起源於美國麻省理工學院的Vensim軟件軟體,是由Ventana公司公司開發,在全球和國內獲得最廣泛使用系統思考分析模組軟體。它具有圖形化的建模方式,並除了具有一般的模型模擬功能外,還具有複合模擬,數組變量,真實性檢驗,靈敏性測試,模型最優化等強大功能.Vensim有Vensim PLE,PLE Plus,Professional和DSS版本,適合不同的使用者。


Vensim 8 系統思考分析軟體
Vensim 8 系統思考分析軟體

XpertRule Knowledge Builder 11.7專家系統建構軟體

Knowledge Builder is an enterprise strength environment for developing and deploying knowledge-based applications and components. Knowledge-based applications are software components which incorporate rules, expertise, know-how, procedures, policies and regulations which can collectively be called "Business Rules".


XpertRule Knowledge Builder 11.7專家系統建構軟體
XpertRule Knowledge Builder 11.7專家系統建構軟體

DEA-Solver Pro 15 資料包絡分析軟體

近年來已經有很多使用資料包絡分析(Data Envelopment Analysis,DEA)來評估許多不同種類實體效益的多種應用,在很多不同背景的國家中從事不同的活動。一個原因是,因為經常有未知的複雜因素,很多動作牽扯到多次輸入和輸出之間的關係,DEA已經提供對解決這些情況的可能性。


DEA-Solver Pro 15 資料包絡分析軟體
DEA-Solver Pro 15 資料包絡分析軟體




2018© Copyright All Rights Reserved