資安軟體-值得您信賴的資安專家,擁有多年資安服務。

CART 6.0 ProEX 資料挖掘分析軟體

CART 6.0 ProEX 資料挖掘分析軟體

  • CART 6.0 ProEX 資料挖掘分析軟體
  • 編號
  • 類別
    研究分析軟體
  • 介紹
    CART是Salford Systems的旗艦數據挖掘軟件,該軟件是一款功能強大、易操作的決策樹,能自動篩選複雜的數據。從技術上講,CART建模引擎基於1984年由斯坦福大學和加州大學伯克利分校的四位世界知名統計學家引入的具有里程碑意義的數學理論。CART建模引擎是SPM的分類和回歸樹實現,是​​唯一體現原始專有代碼的決策樹軟件。
  • 價格

CART 6.0 ProEX

Classification and Regression Trees
CART® software is the ultimate classification tree that has revolutionized the field of advanced analytics, and inaugurated the current era of data science. CART is one of the most important tools in modern data mining.
 
Features
•  Linear Combination Splits
•  Optimal tree selection based on area under ROC curve
•  User defined splits for the root node and its children
•  Translating models into Topology
•  Edit and modify the CART trees via FORCE command structures
•  RATIO of the improvements of the primary splitter and the first competitor
•  Scoring of CV models as an Ensemble
•  Report impact of penalties in root node
•  New penalty against biased splits PENALTY BIAS (PENALTY / BIAS, CONTBIAS, CATBIAS)
•  Automation: Generate models with alternative handling of missing values (Automate MISSING_PENALTY)
•  Automation: Build a model using each splitting rule (six for classification, two for regression) (Automate RULES)
•  Automation: Build a series of models varying the depth of the tree (Automate DEPTH)
•  Automation: Build a series of models changing the minimum required size on parent nodes (Automate ATOM)
•  Automation: Build a series of models changing the minimum required size on child nodes (Automate MINCHILD)
•  Automation: Explore accuracy versus speed trade-off due to potential sampling of records at each node in a tree (Automate SUBSAMPLE)
•  Automation: Generates a series of N unsupervised-learning models (Automate UNSUPERVISED)
•  Automation: Varies the RIN (Regression In the Node) parameter through the series of values (Automate RIN)
•  Automation: Varying the number of "folds" used in cross-validation (Automate CVFOLDS)
•  Automation: Repeat cross-validation process many times to explore the variance of estimates (Automate CVREPEATED)
•  Automation: Build a series of models using a user-supplied list of binning variables for cross-validation (Automate CVBIN)
•  Automation: Check the validity of model performance using Monte Carlo shuffling of the target (Automate TARGETSHUFFLE)
•  Automation: Build two linked models, where the first one predicts the binary event while the second one predicts the amount (Automate RELATED). For example, predicting whether someone will buy and how much they will spend
•  Automation: Indicates whether a variable importance matrix report should be produced when possible (Automate VARIMP)
•  Automation: Saves the variable importance matrix to a comma-separated file (Automate VARIMPFILE)
•  Automation: Generate models with alternative handling of missing values (AUTOMATE MVI)
•  Hotspot detection for Automate UNSUPERVISED
•  Hotspot detection for Automate TARGET
•  Hotspot detection to identify the richest nodes across the multiple trees
•  Differential Lift Modeling (Netlift/Uplift)
•  Profile tab in CART Summary window
•  Multiple user defined lists for linear combinations
•  Constrained trees
•  Ability to create and save dummy variables for every node in the tree during scoring
•  Report basic stats on any variable of user choice at every node in the tree
•  Comparison of learn vs. test performance at every node of every tree in the sequence
•  Automation: Vary the priors for the specified class (Automate PRIORS)
•  Automation: Build a series of models by progressively removing misclassified records thus increasing the robustness of trees and posssibly reducing model complexity (Automate REFINE)
•  Automation: Bagging and ARCing using the legacy code (COMBINE)
•  Automation: Build a series of models limiting the number of nodes in a tree (Automate NODES)
•  Automation: Build a series of models trying each available predictor as the root node splitter (Automate ROOT)
•  Automation: Explore the impact of favoring equal sized child nodes by varying CART’s end cut parameter (Automate POWER)
•  Automation: Explore the impact of penalty on categorical predictors (Automate PENALTY=HLC)
•  Build a Random Forests model utlizing the CART engine to gain alternative handling of missing values via surrogate splits (Automate BOOTSTRAP RSPLIT)
 

CART 6.0 ProEX資料挖掘分析軟體

CARTSalford Systems的旗艦數據挖掘軟件,該軟件是一款功能強大、易操作的決策樹,能自動篩選複雜的數據
 
終極分類樹:
Salford Predictive ModelerCART®建模引擎是最終的分類樹,它徹底改變了高級分析領域,並開創了當前數據科學的時代。CART是現代數據挖掘中最重要的工具之一。
 
專有代碼:
從技術上講,CART建模引擎基於1984年由斯坦福大學和加州大學伯克利分校的四位世界知名統計學家引入的具有里程碑意義的數學理論。CART建模引擎是SPM的分類和回歸樹實現,是​​唯一體現原始專有代碼的決策樹軟件。
 
速度快,用途廣泛:
CART建模引擎的專利擴展專門用於增強市場研究和網絡分析的結果。CART建模引擎支持高速部署,允許Salford Predictive Modeler的模型大規模實時預測和評分。多年來,CART建模引擎已成為分析師可用的最流行且易於使用的預測建模算法之一,它也被用作許多基於裝袋和增強的現代數據挖掘方法的基礎。
 

Miner3D 資料採擴分析軟體

資料分析不需很複雜。Miner3D 是容易的方法去創造想像力,極大量資料導向圖形。Miner3D 是一個結合視覺交互式環境做成基本資料分析和圖表。它的特色是強大功能的使用者界面以控制按鈕創造和自訂化您的圖表。財務專家、藥物研究員、生物科技或者材料研究、地質學家、採礦專家、加工和品質管理員、市場研究人員、銷售主任和許多其他專家使用Miner3D為做出快速地準確性的事業重大決定。

特價0

Miner3D 資料採擴分析軟體
Miner3D 資料採擴分析軟體

MindMapper 心理行為圖像化分析軟體

MindMapper是一款專業的可視化思維導圖軟件,通過智能繪圖方法,在管理信息和處理工作流程中,幫助提高組織、審查、合作、分享和交流能力。而在MindMapper中,製作計劃圖表的時候,有時可能需要加入具體的時間進度安排,從而方便進行更加合理的時間安排。

特價0

MindMapper 心理行為圖像化分析軟體
MindMapper 心理行為圖像化分析軟體

Super Decisions 分析網絡程序法(ANP)軟體

Super Decisions為一種功能強大的決策軟體,主要應用於分析網絡程序法(Analytic Network Process; ANP)的相關研究。運用超級矩陣(Supermatrix)將相互依賴的影響程度運算求出,不僅使ANP更貼近人類的思考模式,更讓原本制式化層級架構變成類似「變形蟲」般的複雜網絡,以利研究人員能夠更貼切地描述問題的特性,甚至去思考「先有雞還是先有蛋」等邏輯性問題。

特價0

Super Decisions 分析網絡程序法(ANP)軟體
Super Decisions 分析網絡程序法(ANP)軟體

公司資訊

立即聯繫

透過以下方式迅速的聯絡我們

2018© Copyright All Rights Reserved

蘋果網頁設計
資安軟體量身規劃資訊安全零死角,提供有效方案,以期協助企業運用新科技改善及提升其商業服務及價值,資安軟體達到運用新科技最佳化商業營運及價值的目標。秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路。資安軟體秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路