CART® 資料挖掘分析軟體-資安軟體/研究分析軟體/心理學軟體/新永資訊有限公司

CART® 資料挖掘分析軟體

CART® 資料挖掘分析軟體

  • CART® 資料挖掘分析軟體
  • 編號
  • 類別
    研究分析軟體
  • 介紹
    CART® 是Salford Systems的旗艦數據挖掘軟件,該軟件是一款功能強大、易操作的決策樹,能自動篩選複雜的數據。從技術上講,CART建模引擎基於1984年由斯坦福大學和加州大學伯克利分校的四位世界知名統計學家引入的具有里程碑意義的數學理論。CART建模引擎是SPM的分類和回歸樹實現,是​​唯一體現原始專有代碼的決策樹軟件。
  • 價格

CART®

Classification and Regression Trees
CART® software is the ultimate classification tree that has revolutionized the field of advanced analytics, and inaugurated the current era of data science. CART is one of the most important tools in modern data mining.
 
Features
•  Linear Combination Splits
•  Optimal tree selection based on area under ROC curve
•  User defined splits for the root node and its children
•  Translating models into Topology
•  Edit and modify the CART trees via FORCE command structures
•  RATIO of the improvements of the primary splitter and the first competitor
•  Scoring of CV models as an Ensemble
•  Report impact of penalties in root node
•  New penalty against biased splits PENALTY BIAS (PENALTY / BIAS, CONTBIAS, CATBIAS)
•  Automation: Generate models with alternative handling of missing values (Automate MISSING_PENALTY)
•  Automation: Build a model using each splitting rule (six for classification, two for regression) (Automate RULES)
•  Automation: Build a series of models varying the depth of the tree (Automate DEPTH)
•  Automation: Build a series of models changing the minimum required size on parent nodes (Automate ATOM)
•  Automation: Build a series of models changing the minimum required size on child nodes (Automate MINCHILD)
•  Automation: Explore accuracy versus speed trade-off due to potential sampling of records at each node in a tree (Automate SUBSAMPLE)
•  Automation: Generates a series of N unsupervised-learning models (Automate UNSUPERVISED)
•  Automation: Varies the RIN (Regression In the Node) parameter through the series of values (Automate RIN)
•  Automation: Varying the number of "folds" used in cross-validation (Automate CVFOLDS)
•  Automation: Repeat cross-validation process many times to explore the variance of estimates (Automate CVREPEATED)
•  Automation: Build a series of models using a user-supplied list of binning variables for cross-validation (Automate CVBIN)
•  Automation: Check the validity of model performance using Monte Carlo shuffling of the target (Automate TARGETSHUFFLE)
•  Automation: Build two linked models, where the first one predicts the binary event while the second one predicts the amount (Automate RELATED). For example, predicting whether someone will buy and how much they will spend
•  Automation: Indicates whether a variable importance matrix report should be produced when possible (Automate VARIMP)
•  Automation: Saves the variable importance matrix to a comma-separated file (Automate VARIMPFILE)
•  Automation: Generate models with alternative handling of missing values (AUTOMATE MVI)
•  Hotspot detection for Automate UNSUPERVISED
•  Hotspot detection for Automate TARGET
•  Hotspot detection to identify the richest nodes across the multiple trees
•  Differential Lift Modeling (Netlift/Uplift)
•  Profile tab in CART Summary window
•  Multiple user defined lists for linear combinations
•  Constrained trees
•  Ability to create and save dummy variables for every node in the tree during scoring
•  Report basic stats on any variable of user choice at every node in the tree
•  Comparison of learn vs. test performance at every node of every tree in the sequence
•  Automation: Vary the priors for the specified class (Automate PRIORS)
•  Automation: Build a series of models by progressively removing misclassified records thus increasing the robustness of trees and posssibly reducing model complexity (Automate REFINE)
•  Automation: Bagging and ARCing using the legacy code (COMBINE)
•  Automation: Build a series of models limiting the number of nodes in a tree (Automate NODES)
•  Automation: Build a series of models trying each available predictor as the root node splitter (Automate ROOT)
•  Automation: Explore the impact of favoring equal sized child nodes by varying CART’s end cut parameter (Automate POWER)
•  Automation: Explore the impact of penalty on categorical predictors (Automate PENALTY=HLC)
•  Build a Random Forests model utlizing the CART engine to gain alternative handling of missing values via surrogate splits (Automate BOOTSTRAP RSPLIT)
 

CART® 資料挖掘分析軟體

CARTSalford Systems的旗艦數據挖掘軟件,該軟件是一款功能強大、易操作的決策樹,能自動篩選複雜的數據
 
終極分類樹:
Salford Predictive ModelerCART®建模引擎是最終的分類樹,它徹底改變了高級分析領域,並開創了當前數據科學的時代。CART是現代數據挖掘中最重要的工具之一。
 
專有代碼:
從技術上講,CART建模引擎基於1984年由斯坦福大學和加州大學伯克利分校的四位世界知名統計學家引入的具有里程碑意義的數學理論。CART建模引擎是SPM的分類和回歸樹實現,是​​唯一體現原始專有代碼的決策樹軟件。
 
速度快,用途廣泛:
CART建模引擎的專利擴展專門用於增強市場研究和網絡分析的結果。CART建模引擎支持高速部署,允許Salford Predictive Modeler的模型大規模實時預測和評分。多年來,CART建模引擎已成為分析師可用的最流行且易於使用的預測建模算法之一,它也被用作許多基於裝袋和增強的現代數據挖掘方法的基礎。
 

ACBC 自適選擇聯合分析軟體

ACBC是一種新的偏好建模方法,利用了CBC(Choice-Based Conjoint)和ACA(Adaptive Conjoint Analysis)的最佳方面。 自適應選擇面試是一種互動體驗,根據每個人的偏好和意見進行定制。CBC/ACA是Teechart旗下久負盛名的聯合分析(Conjoint Analysis)軟體,聯合分析也稱為結合分析。CBC/ACA可以獲得水平的效用值,屬性的相對重要程度,市場細分,預測市場偏好份額等分析結果。

特價0

ACBC 自適選擇聯合分析軟體
ACBC 自適選擇聯合分析軟體

Design-Expert 12 實驗設計軟體

Design Expert 12是一款功能強大的實驗設計專家,它是目前使用最為廣泛的設計軟件之一,使用可對篩選關鍵因素,還可以找到頂級性能的理想工藝設置,並發現最佳產品配方。輕鬆查看可旋轉3D圖的所有角度的響應面。設置標誌和探索交互式2D圖形上的輪廓,並使用數值優化功能找到最大可取幾十個反應同時進行!

特價0

Design-Expert 12 實驗設計軟體
Design-Expert 12 實驗設計軟體

BrainVoyager 21.4 神經影像數據管理和分析軟體

BrainVoyager 是一種高度優化和用戶友好的軟件包,用於分析和可視化功能和結構磁共振成像數據集。該程序可在所有主要計算機平台上運行,包括Windows(XP / 7/8 / 8.1),Linux(例如RedHat,SUSE)和Mac OS X(10.8或更高版本)。結合最佳的跨平台技術,BrainVoyager QX在所有支持的平台上提供原生且響應迅速的用戶界面。

特價0

BrainVoyager 21.4 神經影像數據管理和分析軟體
BrainVoyager 21.4 神經影像數據管理和分析軟體

公司資訊

立即聯繫

透過以下方式迅速的聯絡我們

2018© Copyright All Rights Reserved

蘋果網頁設計
資安軟體量身規劃資訊安全零死角,提供有效方案,以期協助企業運用新科技改善及提升其商業服務及價值,資安軟體達到運用新科技最佳化商業營運及價值的目標。秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路。資安軟體秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路