SmartPLS 結構方程建模軟體 | 新永資訊有限公司

SmartPLS 結構方程建模軟體

SmartPLS 結構方程建模軟體

  • SmartPLS 結構方程建模軟體
  • 編號
  • 類別
    統計分析軟體
  • 介紹
    SmartPLS是一種具有圖形用戶界面的軟件,用於使用偏最小二乘路徑建模方法進行基於變異的結構方程式建模。用戶可以使用基本PLS-SEM,加權PLS-SEM,一致PLS-SEM和sumscores回歸算法來估計模型及其數據。該軟件可計算標準結果評估標準,並支持其他統計分析。
  • 價格

SmartPLS analyses

SmartPLS is the workhorse for all PLS-SEM analyses - for beginners as well as experts

Here is our (constantly growing) list of all available calculation methods. Relevant innovative algorithms will also be made available in SmartPLS within a short time. We promise.
  • Partial least squares (PLS) path modeling
  • Ordinary least squares (OLS) regression based on sumscores
  • Consistent PLS (PLSc)
  • Weighted PLS (WPLS), weighted OLS (WOLS) and weighted consistent PLS (WPLSc)
  • Bootstrapping and the use of advanced bootstrapping options
  • Blindfolding
  • Importance-performance map analysis (IPMA)
  • PLS multi-group analysis (MGA): Analyses the difference and significance of group-specific PLS path model estimations
  • Higher-order Models
  • Mediation: Estimation of indirect effects and their bootstrap-based significance testing
  • Moderation: Estimation of interaction effects and their bootstrap-based significance testing
  • Nonlinear relationships: Estimation of quadratic effects and their bootstrap-based significance testing
  • Confirmatory tetrad analysis (CTA): A statistical technique which allows for empirical testing the measurement model setup
  • Finite mixture (FIMIX) segmentation: A latent class approach which allows identifying and treating unobserved heterogeneity in path models
  • Prediction-oriented segmentation (POS): An approach to identify groups of data
  • PLS Predict: A technique to determine the predictive quality of the PLS path model
  • Prediction-oriented model selection

系統需求

 SmartPLS 的最小系統需求
  • 大約 200MB 的可用硬碟空間
  • 至少2GB的RAM
  • Windows 或 MacOSX 的作業系統

安裝

如需要安裝 SmartPLS ,請下載適用於您操作系統的安裝檔,這些是常見的安裝檔,您可以信任它們的默認設置

授權方式

SmartPLS 可以在 學生模式 (免費但受限)或 專業模式 (啟用所有功能)下運行,專業模式需要許可證,可以通過註冊我們的 免費試用密鑰 購買 許可證來獲得。

更新紀錄

 Version 4.0.9.6, released 2023-09-01
  • Fixed: Resolved PLS Predict issues with binary constructs and standardized PLS-SEM results for accurate predictions.
  • Fixed: Pairwise regression with intercept problems affecting unstandardized PLS-SEM and PLS Predict.
  • Fixed: MIMIC model validation issues in CB-SEM.
  • Improved: Eliminated indicator duplication from "create data file" function, streamlining data management.
  • Improved: Goodness-of-fit evaluation in CB-SEM.
  • Improved: Added simple validations to identify model identification problems in CB-SEM models.
  • Improved: Enhanced validation in data import dialog for covariance data files, ensuring smoother data handling.
  • Improved: Additional sample projects.
  • Improved: Translations

Version 4.0.9.5, released 2022-06-23

  • Fixed: Minor CB-SEM and CBSEM-Bootstrapping calculation issues.
  • Fixed: Minor translation issues.
  • Improved: Updated internal libraries.
  • Improved: Added option to exclude memory consumptive per-sample results from Bootstrapping and Permutation reports.
  • Improved: Validation and calculation of second order constructs in CB-SEM models.
  • Improved: Changed defaults for creating data files from reports to include other columns.
  • Improved: Additional and extended sample projects.

Version 4.0.7.8, released 2022-08-22

  • Improved: Documentation.
  • Improved: Algorithm dialog.
  • Improved: Speed of all algorithms.
  • Improved: Fundamentally renewed and improved results reports.
  • Improved: Charts and figures from model results.
  • Improved: Additional results for descriptive statistics and many algorithms.
  • Improved: Performance of Excel report generation.
  • Improved: Generation of data groups.
  • Improved: Bootstrapping with fixed seed option.
  • Improved: Higher-order models using the two-stage approach, since the first-stage construct scores can now be stored in a data set within SmartPLS.
  • Fixed: License issues.

Version 3.3.9, released 2022-03-28

  • Fixed: Issues with trial.

Version 3.3.8, released 2022-03-27

  • Fixed: Minor stability issues.
  • Improved: Upgraded internal libraries.

Version 3.3.7, released 2022-01-23

  • Improved: Updated translation files.
  • Improved: Upgraded internal libraries.

Version 3.3.6, released 2022-01-19

  • Improved: Improved performance of several algorithms.
  • Improved: Upgraded internal libraries.

Version 3.3.5, released 2021-12-20

  • Fixed: Deadlocks occurred on some computers during save operations.

Version 3.3.4, released 2021-12-16

  • Fixed: Log4J Vulnerability fix. Log4J updated to a patched version (2.16.0)
  • Improved: Upgraded internal libraries.

Version 3.3.3, released 2021-01-11

  • Improved: Upgraded internal libraries.
  • Improved: GUI adjustments, for a better display under Windows 10 and MacOSX Big Sur.
  • Improved: Indicators that contain non-numeric values are marked with an exclamation mark + tooltip in the datafile editor.
  • Fixed: Display errors and refresh problems under MacOSX Big Sure.
  • Fixed: Performance issue with PLSC algorithm.
  • Fixed: Installation problem in the Persian language area.

SmartPLS 結構方程建模軟體

SmartPLS 是所有 PLS-SEM 分析的主要解決方案 - 適合初學者和專家

以下是我們所有可用分析方式的列表(持續增加中),我們承諾相關的創新分析方式也將在短時間內在 SmartPLS 中提供。
  • Partial least squares (PLS) path modeling
  • Ordinary least squares (OLS) regression based on sumscores
  • Consistent PLS (PLSc)
  • Weighted PLS (WPLS), weighted OLS (WOLS) and weighted consistent PLS (WPLSc)
  • Bootstrapping and the use of advanced bootstrapping options
  • Blindfolding
  • Importance-performance map analysis (IPMA)
  • PLS multi-group analysis (MGA): Analyses the difference and significance of group-specific PLS path model estimations
  • Higher-order Models
  • Mediation: Estimation of indirect effects and their bootstrap-based significance testing
  • Moderation: Estimation of interaction effects and their bootstrap-based significance testing
  • Nonlinear relationships: Estimation of quadratic effects and their bootstrap-based significance testing
  • Confirmatory tetrad analysis (CTA): A statistical technique which allows for empirical testing the measurement model setup
  • Finite mixture (FIMIX) segmentation: A latent class approach which allows identifying and treating unobserved heterogeneity in path models
  • Prediction-oriented segmentation (POS): An approach to identify groups of data
  • PLS Predict: A technique to determine the predictive quality of the PLS path model
  • Prediction-oriented model selection

LISREL 結構方程式模型軟體

LISREL是一款專業且功能強大的統計分析軟體,主要用於結構方程模型(SEM)建模。它允許研究人員建立複雜的統計模型,用於檢驗理論和研究不同變數之間的關係。透過LISREL,用戶可以使用統計模型來檢驗假設,了解變數之間的相互關係,以及這些關係如何影響觀察到的數據,並且執行多組群體差異比較。它支援不同類型的變數,包括觀察變數和潛在變數,並且能夠處理複雜的數據結構。LISREL還提供了豐富的統計分析功能,包括驗證性因素分析(CFA)、路徑分析和因果關係等。這些功能使得用戶能夠對數據進行全面的分析,從而深入理解研究問題和現象。此外,LISREL還具有強大的模型擬合和評估功能,用戶可以通過適度性指標分析來評估模型的有效性和適合度,這有助於確保建立的模型能夠合理地解釋觀察到的數據,提高研究的可靠性和信度。

LISREL 結構方程式模型軟體

IBM SPSS Statistics 31 統計分析軟體

IBM SPSS Statistics 31 是一款專業的數據分析和統計軟體,可以幫助用戶進行複雜的數據分析和預測。該軟體支持多種數據格式和數據來源,如結構化數據、非結構化數據、文本數據、數據庫等。使用 IBM SPSS Statistics,您可以輕鬆地進行數據輸入與管理、敘述統計、推斷統計、數據視覺化及報告生成等操作,並提供了豐富的分析工具和圖表模板。該軟體還支持多種分析方法,如回歸分析、因子分析、集群分析、判別分析、統計分析、預測分析等,幫助用戶從數據中發現有價值的信息和洞察。此外,IBM SPSS Statistics 還提供了豐富的支持,使得用戶可以輕鬆地掌握數據分析和統計技能。如果您是一名數據分析師、研究人員、學術人員或學生,IBM SPSS Statistics 將是您不可或缺的工具。

IBM SPSS Statistics 31 統計分析軟體

PRIMER-e v7 生態學多變數統計軟體

PRIMER 已成為非參數多變量分析軟件工具的全球標準。當變量過多或多元正態性假設不成立時,經典技術會動搖。 PRIMER 使用統計方法進行救援,這些方法依賴於強大的置換技術進行嚴格的推理,通常根據用戶選擇的等級相似性執行。盡量減少你的假設。最大化您的洞察力。 第 7 版充滿了 PRIMER 獨有的大量新產品(例如 3 路 ANOSIM、 閾值度量 MDS、kRCLUSTER、引導程序平均值等),提供了 一個不可或缺的現代工具來可視化、分析和表徵多變量中的顯著模式數據。

PRIMER-e v7 生態學多變數統計軟體