Molpro 2019 量子化學計算軟體-資安軟體/研究分析軟體/心理學軟體/新永資訊有限公司

Molpro 2019 量子化學計算軟體

Molpro 2019 量子化學計算軟體

  • Molpro 2019 量子化學計算軟體
  • 編號
  • 類別
  • 介紹
  • 價格

Molpro 量子化學計算軟體

Molpro is a complete system of ab initioprograms for molecular electronic structure calculations, designed and maintained by H.-J. Werner and P. J. Knowles, and containing contributions from a number of other authors. As distinct from other commonly used quantum chemistry packages, the emphasis is on highly accurate computations, with extensive treatment of the electron correlation problem through the multiconfiguration-reference CI, coupled cluster and associated methods. Using recently developed integral-direct local electron correlation methods, which significantly reduce the increase of the computational cost with molecular size, accurate ab initio calculations can be performed for much larger molecules than with most other programs.
The heart of the program consists of the multiconfiguration SCF, multireference CI, and coupled-cluster routines, and these are accompanied by a full set of supporting features. The package comprises
  •   •  Integral generation for generally contracted symmetry adapted gaussian basis functions ($spdfghi$). There are two programs with identical functionality: the preferred code is SEWARD (R. Lindh) which is the best on most machines; ARGOS (R. M. Pitzer) is available as an alternative, and in some cases is optimum for small memory scalar machines. Also two different gradient integral codes, namely CADPAC (R. Amos) and ALASKA (R. Lindh) are available. Only the latter allows the use of generally contracted symmetry adapted gaussian basis functions.
  •   •  Effective Core Potentials (contributions from H. Stoll).
  •   •  Many one-electron properties.
  •   •  Some two-electron properties, e.g. $L_x^2$$L_y^2$$L_z^2$$L_xL_y$ etc..
  •   •  Closed-shell and open-shell (spin restricted and unrestricted) self consistent field.
  •   •  Density-functional theory in the Kohn-Sham framework with various gradient corrected exchange and correlation potentials.
  •   •  Multiconfiguration self consistent field. This is the quadratically convergent MCSCF procedure described in J. Chem. Phys. 82 (1985) 5053. The program can optimize a weighted energy average of several states, and is capable of treating both completely general configuration expansions and also long CASSCF expansions as described in Chem. Phys. Letters 115 (1985) 259.
  •   •  Multireference CI. As well as the usual single reference function approaches (MP2, SDCI, CEPA), this module implements the internally contracted multireference CI method as described in J. Chem. Phys. 89 (1988) 5803 and Chem. Phys. Lett. 145 (1988) 514. Non variational variants (e.g. MR-ACPF), as described in Theor. Chim. Acta 78 (1990) 175, are also available. Electronically excited states can be computed as described in Theor. Chim. Acta, 84 95 (1992). 
  •   •  Multireference second-order and third-order perturbation theory (MR-PT2, MR-PT3) as described in Mol. Phys. 89, 645 (1996) and J. Chem. Phys. 112, 5546 (2000). 
  •   •  Møller-Plesset perturbation theory (MPPT), Coupled-Cluster (CCSD), Quadratic configuration interaction (QCISD), and Brueckner Coupled-Cluster (BCCD) for closed shell systems, as described in Chem. Phys. Lett. 190 (1992) 1. Perturbative corrections for triple excitations can also be calculated (Chem. Phys. Letters 227 (1994) 321). 
  •   •  Open-shell coupled cluster theories as described in J. Chem. Phys. 99 (1993) 5219, Chem. Phys. Letters 227 (1994) 321. 
  •   •  Full Configuration Interaction. This is the determinant based benchmarking program described in Comp. Phys. Commun. 54 (1989) 75. 
  •   •  Analytical energy gradients for SCF, DFT, state-averaged MCSCF/CASSCF, MRPT2/CASPT2, MP2 and QCISD(T) methods. 
  •   •  Analytical non-adiabatic coupling matrix elements for MCSCF. 
  •   •  Valence-Bond analysis of CASSCF wavefunction, and energy-optimized valence bond wavefunctions as described in Int. J. Quant. Chem. 65, 439 (1997). 
  •   •  One-electron transition properties for MCSCF, MRCI, and EOM-CCSD wavefunctions, CASSCF and MRCI transition properties also between wavefunctions with different orbitals. 
  •   •  Spin-orbit coupling, as described in Mol. Phys., 98, 1823 (2000). 
  •   •  Some two-electron transition properties for MCSCF wavefunctions (e.g., $L_x^2$ etc.).
  •   •  Population analysis.
  •   •  Orbital localization.
  •   •  Distributed Multipole Analysis (A. J. Stone). 
  •   •  Automatic geometry optimization as described in J. Comp. Chem. 18, (1997), 1473. 
  •   •  Automatic calculation of vibrational frequencies, intensities, and thermodynamic properties. 
  •   •  Reaction path following, as described in Theor. Chem. Acc. 100, (1998), 21. 
  •   •  Various utilities allowing other more general optimizations, looping and branching (e.g., for automatic generation of complete potential energy surfaces), general housekeeping operations. 
  •   •  Geometry output in XYZ, MOLDEN and Gaussian formats; molecular orbital and frequency output in MOLDEN format. 
  •   •  Integral-direct implementation of all Hartree-Fock, DFT and pair-correlated methods (MP, CCSD, MRCI etc.), as described in Mol. Phys., 96, (1999), 719. At present, perturbative triple excitation methods are not implemented. 
  •   •  Local second-order Møller-Plesset perturbation theory (LMP2) and local coupled cluster methods, as described in in J. Chem. Phys. 104, 6286 (1996), Chem. Phys. Lett. 290, 143 (1998), J. Chem. Phys. 111, 5691 (1999), J. Chem. Phys. 113, 9443 (2000), J. Chem. Phys. 113, 9986 (2000), Chem. Phys. Letters 318, 370 (2000), J. Chem. Phys. 114, 661 (2001), Phys. Chem. Chem. Phys. 4, 3941 (2002). 
  •   •  Local density fitting methods, as described in J. Chem. Phys. 118, 8149 (2003), Phys. Chem. Chem. Phys. 5, 3349 (2003), Mol. Phys. 102, 2311 (2004). 
  •   •  Analytical energy gradients for LMP2 and DF-LMP2, as described in J. Chem. Phys. 108, 5185, (1998), J. Chem. Phys. 121, 737 (2004). 
  •   •  Explicit correlation methods, as described in J. Chem. Phys. 119, 4607 (2003), J. Chem. Phys. 121, 4479 (2004), J. Chem. Phys. 124, 054114 (2006), J. Chem. Phys. 124, 094103 (2006). 
  •   •  Parallel execution on distributed memory machines, as described in J. Comp. Chem. 19, (1998), 1215. At present, SCF, DFT, MRCI, MP2, LMP2, CCSD(T) energies and SCF, DFT gradients are parallelized when running with conventional integral evaluation; integral-direct and density fitted SCF, DFT, LMP2, and LCCSD(T) are also parallel.

FlexPDE 7 偏微分有限元素軟體



FlexPDE 7 偏微分有限元素軟體
FlexPDE 7 偏微分有限元素軟體

TURBOMOLE 7.4 化學計算軟體

Turbomole被認為是進行HF,DFT,MP2計算最快最穩定的代碼之一。它的特色不是在於新方法和新功能,而在於解決如何用盡量短的時間和 盡量少的內存需求,快速、穩定地處理工業應用型的分子。特別是它獨有的RI-DFT方法,據稱可以較其它大多數DFT程序節省10倍的CPU時間,因此非 常適合於大分子計算或中等分子的重複性計算(如幾何優化)


TURBOMOLE 7.4 化學計算軟體
TURBOMOLE 7.4 化學計算軟體

ADF 2019 量子化學軟體

ADF(阿姆斯特丹密度泛函數,Amsterdam Density Functional)是用於計算氣相或溶液環境中的原子和分子的  Fortran 程序。它可用於各種領域的研究,如分子光譜,有機和無機和化學,晶體學和藥物化學。ADF 軟體套件中的BAND程式是用於研究周期體系:晶體,表面,以及聚合物。


ADF 2019 量子化學軟體
ADF 2019 量子化學軟體




2018© Copyright All Rights Reserved