Molpro 2019 量子化學計算軟體-資安軟體/研究分析軟體/心理學軟體/新永資訊有限公司

Molpro 2019 量子化學計算軟體

Molpro 2019 量子化學計算軟體

  • Molpro 2019 量子化學計算軟體
  • 編號
  • 類別
    生化統計分析軟體
  • 介紹
    MOLPRO的重點是高精度計算,通過多參考CI,耦合簇和有關的方法,廣泛處理電子相關問題。使用最近開發的直接積分局域電子方法,可以極大地減少隨分子尺寸增加的計算量,能夠對更大的分子體系進行準確的從頭計算
  • 價格

Molpro 量子化學計算軟體

MOLPRO的重點是高精度計算,通過多參考CI,耦合簇和有關的方法,廣泛處理電子相關問題。使用最近開發的直接積分局域電子方法,可以極大地減少隨分子尺寸增加的計算量,能夠對更大的分子體系進行準確的從頭計算
Molpro is a complete system of ab initioprograms for molecular electronic structure calculations, designed and maintained by H.-J. Werner and P. J. Knowles, and containing contributions from a number of other authors. As distinct from other commonly used quantum chemistry packages, the emphasis is on highly accurate computations, with extensive treatment of the electron correlation problem through the multiconfiguration-reference CI, coupled cluster and associated methods. Using recently developed integral-direct local electron correlation methods, which significantly reduce the increase of the computational cost with molecular size, accurate ab initio calculations can be performed for much larger molecules than with most other programs.
The heart of the program consists of the multiconfiguration SCF, multireference CI, and coupled-cluster routines, and these are accompanied by a full set of supporting features. The package comprises
  •   •  Integral generation for generally contracted symmetry adapted gaussian basis functions ($spdfghi$). There are two programs with identical functionality: the preferred code is SEWARD (R. Lindh) which is the best on most machines; ARGOS (R. M. Pitzer) is available as an alternative, and in some cases is optimum for small memory scalar machines. Also two different gradient integral codes, namely CADPAC (R. Amos) and ALASKA (R. Lindh) are available. Only the latter allows the use of generally contracted symmetry adapted gaussian basis functions.
  •   •  Effective Core Potentials (contributions from H. Stoll).
  •   •  Many one-electron properties.
  •   •  Some two-electron properties, e.g. $L_x^2$$L_y^2$$L_z^2$$L_xL_y$ etc..
  •   •  Closed-shell and open-shell (spin restricted and unrestricted) self consistent field.
  •   •  Density-functional theory in the Kohn-Sham framework with various gradient corrected exchange and correlation potentials.
  •   •  Multiconfiguration self consistent field. This is the quadratically convergent MCSCF procedure described in J. Chem. Phys. 82 (1985) 5053. The program can optimize a weighted energy average of several states, and is capable of treating both completely general configuration expansions and also long CASSCF expansions as described in Chem. Phys. Letters 115 (1985) 259.
  •   •  Multireference CI. As well as the usual single reference function approaches (MP2, SDCI, CEPA), this module implements the internally contracted multireference CI method as described in J. Chem. Phys. 89 (1988) 5803 and Chem. Phys. Lett. 145 (1988) 514. Non variational variants (e.g. MR-ACPF), as described in Theor. Chim. Acta 78 (1990) 175, are also available. Electronically excited states can be computed as described in Theor. Chim. Acta, 84 95 (1992). 
  •   •  Multireference second-order and third-order perturbation theory (MR-PT2, MR-PT3) as described in Mol. Phys. 89, 645 (1996) and J. Chem. Phys. 112, 5546 (2000). 
  •   •  Møller-Plesset perturbation theory (MPPT), Coupled-Cluster (CCSD), Quadratic configuration interaction (QCISD), and Brueckner Coupled-Cluster (BCCD) for closed shell systems, as described in Chem. Phys. Lett. 190 (1992) 1. Perturbative corrections for triple excitations can also be calculated (Chem. Phys. Letters 227 (1994) 321). 
  •   •  Open-shell coupled cluster theories as described in J. Chem. Phys. 99 (1993) 5219, Chem. Phys. Letters 227 (1994) 321. 
  •   •  Full Configuration Interaction. This is the determinant based benchmarking program described in Comp. Phys. Commun. 54 (1989) 75. 
  •   •  Analytical energy gradients for SCF, DFT, state-averaged MCSCF/CASSCF, MRPT2/CASPT2, MP2 and QCISD(T) methods. 
  •   •  Analytical non-adiabatic coupling matrix elements for MCSCF. 
  •   •  Valence-Bond analysis of CASSCF wavefunction, and energy-optimized valence bond wavefunctions as described in Int. J. Quant. Chem. 65, 439 (1997). 
  •   •  One-electron transition properties for MCSCF, MRCI, and EOM-CCSD wavefunctions, CASSCF and MRCI transition properties also between wavefunctions with different orbitals. 
  •   •  Spin-orbit coupling, as described in Mol. Phys., 98, 1823 (2000). 
  •   •  Some two-electron transition properties for MCSCF wavefunctions (e.g., $L_x^2$ etc.).
  •   •  Population analysis.
  •   •  Orbital localization.
  •   •  Distributed Multipole Analysis (A. J. Stone). 
  •   •  Automatic geometry optimization as described in J. Comp. Chem. 18, (1997), 1473. 
  •   •  Automatic calculation of vibrational frequencies, intensities, and thermodynamic properties. 
  •   •  Reaction path following, as described in Theor. Chem. Acc. 100, (1998), 21. 
  •   •  Various utilities allowing other more general optimizations, looping and branching (e.g., for automatic generation of complete potential energy surfaces), general housekeeping operations. 
  •   •  Geometry output in XYZ, MOLDEN and Gaussian formats; molecular orbital and frequency output in MOLDEN format. 
  •   •  Integral-direct implementation of all Hartree-Fock, DFT and pair-correlated methods (MP, CCSD, MRCI etc.), as described in Mol. Phys., 96, (1999), 719. At present, perturbative triple excitation methods are not implemented. 
  •   •  Local second-order Møller-Plesset perturbation theory (LMP2) and local coupled cluster methods, as described in in J. Chem. Phys. 104, 6286 (1996), Chem. Phys. Lett. 290, 143 (1998), J. Chem. Phys. 111, 5691 (1999), J. Chem. Phys. 113, 9443 (2000), J. Chem. Phys. 113, 9986 (2000), Chem. Phys. Letters 318, 370 (2000), J. Chem. Phys. 114, 661 (2001), Phys. Chem. Chem. Phys. 4, 3941 (2002). 
  •   •  Local density fitting methods, as described in J. Chem. Phys. 118, 8149 (2003), Phys. Chem. Chem. Phys. 5, 3349 (2003), Mol. Phys. 102, 2311 (2004). 
  •   •  Analytical energy gradients for LMP2 and DF-LMP2, as described in J. Chem. Phys. 108, 5185, (1998), J. Chem. Phys. 121, 737 (2004). 
  •   •  Explicit correlation methods, as described in J. Chem. Phys. 119, 4607 (2003), J. Chem. Phys. 121, 4479 (2004), J. Chem. Phys. 124, 054114 (2006), J. Chem. Phys. 124, 094103 (2006). 
  •   •  Parallel execution on distributed memory machines, as described in J. Comp. Chem. 19, (1998), 1215. At present, SCF, DFT, MRCI, MP2, LMP2, CCSD(T) energies and SCF, DFT gradients are parallelized when running with conventional integral evaluation; integral-direct and density fitted SCF, DFT, LMP2, and LCCSD(T) are also parallel.

CrystalDiffract v6 化學分子軟體

Your Desktop Diffractometer CrystalDiffract brings the world of x-ray & neutron powder diffraction to your computer screen, with interactive control and easy characterization of your experimental data.

特價0

CrystalDiffract v6 化學分子軟體
CrystalDiffract v6 化學分子軟體

EnzFitter 2 酵素動力學資料

EnzFitter is a generic curve-fitting package which has custom features designed to make it especially suitable for analysis of enzyme kinetics experiments. For example, initial rate and parameter values can be obtained with their confidence limits for single and twin substrate rate data. Built-in models include Michaelis-Menten with or without substrate inhibition, competitive, uncompetitive and mixed inhibition, ternary complex or ordered bi-bi systems and ping-pong with and without inhibition by substrates. You can easily add other models in conventional algebraic syntax.

特價0

EnzFitter 2 酵素動力學資料
EnzFitter 2 酵素動力學資料

Diamond 4 分子結構軟體

Diamond是傑出的分子和晶體結構顯示軟體.它結合了多種功能,可以用於含有晶體結構數據的工作,適用於教育,科學研究以及出版。Diamond像其它的軟體一樣不僅可以畫出精密的分子和晶體結構圖片,它還有一系列拓展的功能,它可以讓你很容易的從一套基本結構參數(晶胞,空間群和原子的位置)中模擬任意部分的晶體結構。

特價0

Diamond 4 分子結構軟體
Diamond 4 分子結構軟體

公司資訊

立即聯繫

透過以下方式迅速的聯絡我們

2018© Copyright All Rights Reserved

蘋果網頁設計
資安軟體量身規劃資訊安全零死角,提供有效方案,以期協助企業運用新科技改善及提升其商業服務及價值,資安軟體達到運用新科技最佳化商業營運及價值的目標。秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路。資安軟體秉持讓客戶可以安心、輕鬆、有效的享用現代科技有線網路